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ABSTRACT

The problem of finding a prototype for typewritten or handwritten
characters belongs to a family of “shape prior” estimation
problems. In epigraphic research, such priors are derived
manually, and constitute the building blocks of “paleographic
tables”. Suggestions for automatic solutions to the estimation
problem are rare in both the Computer Vision and the
OCR/Handwriting Text Recognition communities. We review
some of the existing approaches, and propose a new robust
scheme, suitable for the challenges of degraded historical
documents. This fast and easy to implement method is employed
for ancient Hebrew inscriptions dated to the First Temple period.
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1 INTRODUCTION

The issue of prototype
handwritten characters belongs to a broad type of “shape prior”

inference for typewritten or

determination problems, which has gathered substantial research
interest during the last two decades. Nevertheless, research
deriving shape prior of handwritten or printed characters are
relatively rare in both the Computer Vision (CV) and the
OCR/Handwriting Text Recognition (HTR) communities. The lack
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of interest of CV scientists can be explained by the specificity of
this challenging problem. On the other hand, most of the HTR
studies focus on producing ever improving recognition engines —
a related, yet not directly dependent problem. The relatively low
interest in the subject resulted in diverse terms used by the
existing publications. Among the related terms are
“letter/handwriting prototypes”, “document-specific alphabet”,
“reconstructed font”, “glyph extraction”, “character template
estimation”, “character models”, “codebook generation”,
“ideal/Platonic prototypes” and “letter shape priors”. In what
follows, we shall use the last term, common in the CV community.

The reconstructed priors can be utilized for issues such as
denoising automatic damage removal, compression, archiving, as
well as handwriting and style analyses. Moreover, in the context
of historical texts, the priors are closely related to the so called
“paleographic tables” — a basic and crucial instrument in the
toolbox of the historical epigrapher (an expert on ancient
writings). Commonly, such tables contain one characteristic
example of each letter type for each inscription in a given corpus;
see example on Fig. 1. The tables are used to trace the similarities
and the differences within the handwriting of different localities
and time periods. This labor-intensive process joins other
manually performed epigraphic tasks. Indeed, currently, the
imaging, the creation of the facsimile (a black and white depiction
of the inscription), the recognition of the letters, the transcription,
the creation of paleographic tables, as well as their analysis are all
carried out manually by epigraphic experts. Such an effort is
extremely time-consuming, producing results which may
accidentally mix-up documentation with interpretation. In other
words, the quality of the paleographic tables is often debated and,
unfortunately, cannot be treated as an established “ground truth”.

In previous publications, we dealt with imaging techniques of
ancient ostraca (ink on clay inscriptions; mostly dated to the 7th
century BCE) [1,2], as well as their binarizations [3-6] and writers’
identifications [7,8]. The current research is a continuation of
these studies. Its envisioned objective is an automatically derived
paleographic table, accompanied by its algorithmic analysis. In
this paper, we will concentrate on a challenging intermediate goal
of obtaining the main building block of such a table, i.e. the letter
shape prior.

For consistency purposes, the following terminology is used
throughout this article. By “letters” we designate the members of
the alphabet, e.g. “aleph”, “bet”, etc. Their realizations by the
writer are the particular characters, e.g. an inscription may
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contain several “bet” characters. A “letter shape prior”, or in short
“letter prior”, represents a typical way of depicting a given letter.
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Figure 1: Manually created paleographic table, recording
“typical” representatives for each letter in the alphabet
(adapted from [25]).

2 PRIOR ART

Ostensibly, the task of estimating the letter prior seems to be
relatively straightforward, requiring a registration of the
character their subsequent
thresholding. However, in reality, this undertaking turns out to be

images, accumulation and
surprisingly difficult. Indeed, elastic image registration is an NP-
complete problem [9]. Moreover, multiple template alignment
estimation was also shown to be NP-complete [10]. Thus, the
existing solutions of mutual registration problem are heuristic,
and tend to balance between the computational costs and the
quality of the result.

Kopec and Lomelin [10] proposed a sophisticated Aligned
Template Estimation (ATE) framework, in which overlapping
glyphs templates were searched in a page image. The authors used
a two-phase iterative training algorithm, encompassing an
alignment of pre-existing transcriptions given an initial guess
(existing transcriptions), as well as an ATE stage. The ATE step
was implemented via a likelihood maximization procedure. The
technique was designed for typewritten characters. Its results
were reasonable given sufficiently large data and a number of
iterations. Nevertheless, some artifacts were present in the
resulting “priors”, due to the method's “unawareness” of the
different character properties, and segmentation
boundaries. Bern and Goldberg [11] proposed a variation on the
theme of super-resolution within a single image, also in the
context of printed text. Given a relatively clean binarized
document image, the letters were registered, then iteratively
clustered, taking phenomena such as touching letters into
account. A Bayesian calculation yielded a prior, which was
utilized for image de-noising purposes. The results of this
algorithm also exhibited certain artifacts, due to the exceedingly
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fine-grained clustering, and mistaking noisy characters for
distinct glyphs.

For handwriting, several papers included prior estimation as
an intermediate step in handwriting synthesis (i.e. a simulation of
a particular handwriting style given a few writing examples). As
opposed to the relatively fixed typewritten characters of previous
works, now a more challenging cursive writing, with its high
variance, was considered. The inputs in these cases were clean
and thinned writing examples. In [12], after a segmentation
achieved by a Hidden Markov Model, a curve control point
interpolation was performed. Wang et al. [13] extracted priors in
addition to a "tri-unit" technique (akin to the tri-grams of Speech
Recognition). This was used in order to identify different types of
“contact” strokes between various characters. The shape prior
creation was composed of control point extraction (Gabor filters
leading to a B-splines approximation), affine registration and
shape prior parameter estimation stages, with impressive results.

Edwards and Forsyth [14] derived a shape prior in the
complicated world of historical documents (12t century
manuscript). The authors initiated the priors with hand cut
examples. The page image was then segmented into words and
characters; each word possessed several possible segmentations
(represented by a graph). For each word, the different possible
segmentations were searched within a pre-existing dictionary (in
the target language) by comparing the word image with the
candidate word image derived from shape priors. The high
confidence matches were accepted, and then the shape priors
were updated. If necessary, new shape priors (possibly more than
one for a single character) were created. The process was then
repeated. A similar statistical language model was also utilized in
[15,16], where candidate words are checked vs. an English corpus.
Words (token) co-occurrence statistics was used in order to
correctly identify problematic characters.

A noteworthy modern variational approach in a historic
setting was presented in [17,18]. Given a set of character edges, a
confidence map (shape prior) was created for each character
individually via a Gradient Vector Flow. Subsequently, the
confidence map could be fitted back into the document image,
utilizing the Active Contour method, in order to achieve high-
quality segmentation. Panagopoulos et al. [19] utilized estimated
“ideal” or “Platonic” prototypes for each letter of historical
inscriptions for the purpose of writer identification analysis.

3 THE WRITING MEDIUM AND THE
PROPOSED ALGORITHM

This paper deals with ancient Hebrew ostraca (ink on clay
inscriptions), created at the end of the First Temple period, ca. 600
BCE. These texts, written in alphabetical Paleo-Hebrew writing,
are of mundane nature, covering issues such as food supplies and
movement of troops. Many of the ostraca were not composed by
professional scribes [7], and therefore the variability of the
handwriting is very high. The inscriptions are quite short
(typically containing 30-100 characters), and their state of
preservation is poor (the ostraca are often broken, and parts of the
writing are soiled).



These characteristics of the writing medium influenced the
design of our algorithm. Contrary to prior art, only small amounts
of characters for each type of letter are present for each ostracon.
Moreover, the inscriptions are highly degraded (with blurred and
erased characters, as well as cracks and stains easily mistaken for
characters). Hence, we preferred robust statistical estimators such
as median and medoid (a representative object, whose
dissimilarity to other objects in the population is minimal) over
the commonly used mean, which is easily susceptible to noise (for
another use of medoids and medians in a related setting, see [4]).

We assume grayscale images of the ostraca (e.g. acquired by
methods described in [1,2]). We also pre-suppose imperfect black
and white facsimiles, registered to the grayscale ostraca images.
Such facsimiles are often created by epigraphers (an automatic
creation of facsimiles, i.e. binarization, can also be attempted, see
[3,4]). The facsimiles (manual depictions of the inscription) are
only utilized for preliminary segmentation purposes, in a manner
similar to that described in [3], i.e. the registered facsimiles
provide us with an initial indication regarding the position and
the type of inscriptions’ characters within the ostraca images. The
algorithm utilizes the cropped (dilated and padded) character
grayscale images; chooses a medoid image via simple registration
procedure; registers all the other character images to the medoid
image; calculates the initial prior via median calculation per each
pixel coordinate; thresholds the prior via modification of Otsu’s
algorithm [20], and if needed, smoothes the result.

The detailed steps of our algorithm, for a given inscription and
letter, are:

1. Cropping character images:

1.1.  The characters’ convex hulls of width W, and height
h, (i=1..,K), are found at the facsimile level.

12, The convex hulls are dilated by PAD-max{w;,h}
pixels (assuming 4-connectivity), with respect to a pre-
determined parameter PAD (herein, PAD =0.1).

1.3. The locations of the dilated convex hulls in the

facsimile image are used in order to crop rectangular
images  S;(m,n):[L,M,]1x[},N,]—>[0,255] of the
characters from the grayscale ostraca images. Pixels
corresponding to the dilated convex hulls assume the
grayscale values of the inscription image, while other
pixels assume the padding value of 255.

2. Padding character images:

2.1. The maximal dimensions of the character images are
calculated: M =max{M,}, N =max{N} .
2.2. These dimensions are utilized in order to create padded

character images of common size. The padding (by 255)
is applied symmetrically on the opposite sides of S,,

resulting in P(m,n):[1, M]x[L, N]—[0,255], images
of the same size.

3. Initial characters’ registration:
3.1. Foreach i=1,..,K and for each j=1,..,K s.t. i#j

a normalized cross-correlation fit p; [21] is calculated

between P and S,.
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3.2. The (not necessarily symmetrical) distances d; are
calculated: d; = (l—pij)IZ (see [22] for details).
3.3. A medoid index I:argmin[ZdijJ and an initial
i i
registered image R, =P are established.
34. Forall i=1..,K,s. t i=l,the S;(mn) images are

translated according to their optimal shift with respect
to R/ (calculated at stage 3.1), in order to obtain
registered images R; ; their padding value is 255.
4.  Letter prior initialization:
The initial prior L is calculated via median for each pixel
coordinate, over all the registered character images:
Linic (M, N) = r?gd'%n{R.(m: n)}.

5. Letter prior thresholding:
A thresholded prior
Ly, =Otsu™ (L,
algorithm [20] ignoring the histogram value of 255 (i.e. the
padding values of steps 1.3, 2.2 and 3.4, which might skew
the statistics).

6. Letter prior smoothing:
A smoothed

image calculated via

Llhr is

), where Otsu” is an adaptation of Otsu’s

init

calculated via

MorphCV is a

image L is

prior sm

Lsm = MOthCV (Lthrl REG) ’

where

morphological solution to the popular Chan-Vese [23]

framework, introduced and analyzed in [24]. The latter

demonstrates the equivalence of variational and median-

based smoothing. REG as an optional regularization

(smoothing) parameter, controlling the median filter radius.
7. Optional letter prior calculation loop:

The estimated prior L, can now be plugged-in at step 3.4,

with all the S, optimally fitted to L, instead of the medoid
P . The resulting collection can then be refined (via the

median, as in step 4), the outcome thresholded by Otsu” (as
in step 5), and its result smoothed via MorphCV (as in step

6). The loop can be either stopped at this stage, or repeated
until convergence.

4 RESULTS

Experimentations
conducted on three relatively large ostraca, belonging to the First
Temple period corpus of Hebrew inscription from the Arad
fortress [25], dated to ca. 600 BCE. In particular, we tested
different configurations of our method on Arad 1, Arad 2 and Arad
24b (verso side) inscriptions. The 8-bit grayscale images of the
ostraca were approximately of the same resolution, with a typical
character size of 30,000-60,000 pixels (width and height varying
depending on the character). Registered facsimiles, colored
according to letter types, were also utilized; see Figs. 2-4 for
images of ostraca and their facsimiles.

with the proposed framework were



This size of the ostracon images was reduced by half (on each
side) in some of the experiments, in order to test the performance
of the algorithm in such a setting. In total, 310 characters were
utilized. Several representative examples of the algorithm’s steps
and its outcomes are provided below.
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Figure 2: Arad 1 - an ostracon image and its corresponding
facsimile. The various colors of the facsimile (adapted from
[25]) indicate different letter types.
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Figure 3: Arad 2 - an ostracon image and its corresponding
facsimile. The various colors of the facsimile (adapted from
[25]) indicate different letter types.
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Figure 4: Arad 24b - an ostracon image and its
corresponding facsimile. The various colors of the facsimile
(adapted from [25]) indicate different letter types.
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Fig. 5 shows an illustration of the algorithm’s flow on a letter
“yod” from Arad 24b. On the top row, a refinement of the prior
(based on 14 characters) is shown, with no attempt at
regularization (smoothing). On the bottom row, three consecutive
priors are regularized by an algorithm [24], performing median-
based smoothing with median filter radius set to REG=>5. Similarly,
Fig. 6 shows the steps for a regularized computation of “mem”
from Arad 2 (based on 10 characters).

@ 3
+$ 3 F

Figure 5: An example of the algorithm’s flow for “yod”
letter, Arad 24b. Top: a median-based initialization of a
prior (utilizing information from 14 characters), and an
estimation of two consequent priors, with no attempt at
regularization (smoothing). Bottom: three consecutive
priors are regularized with REG=5.

#5555

Figure 6: Steps for a regularized prior computation of
“mem” from Arad 2 (based on 10 characters).

Fig. 7 provides a computation of a prior for the letter “ayin”
from Arad 1 ostracon, in both full and partial resolution
(subsequently scaled to the same size). It can be observed that in
this case, “less is more”, with higher resolution input resulting in
unwarranted artifacts, mistaken for delicate features.

Figure 7: The letter “ayin” from Arad 1 (based on 3
characters). Top: computation of letter prior for full
resolution imagery, REG=5. Bottom: computation of letter
prior for partial resolution (halved in each axis), with no
regularization, REG=5 and REG=10.

As visual observations of the results are subjective in nature,
and since neither ancient nor modern writing specimens possess



a reliable and uncontested ground truth for letters’ priors (in fact,
even the facsimiles utilized herein tend to be rather imprecise
[26]), we settled on an experimental methodology akin to the one
presented in [6]. Every facsimile character of every ostracon was
treated (in its turn) as “artificial” ground truth for a letter’s prior.
Subsequently, “synthetic” character instances were obtained by
adding incrementally increasing levels of disturbances to this
image, resulting in different grayscale images. These were utilized
to infer a prior. Finally, this estimation was compared to the
“ground truth”, in order to deduce the precision and recall. Some
details on the settings of various experiments are provided in
Table 1.

Table 1: Experiments’ Settings

Table 3: Results of Experiment #1 for Arad 2 Ostracon

Gaussian

Results for each scenario

noise Number of Average Average
1 1 character instances ..
evels for each prior precision recall
2 90.28% 89.00%
std = 200 4 97.64% 97.71%
algra}(, 6 98.46% 98.39%
values (out

of 255). 8 98.63% 98.50%
10 98.66% 98.52%

Table 4: Results of Experiment #1 for Arad 24b Ostracon

Settings
Experi- Number of Total Gaussian Results for each scenario
Gaussian noise instances number . Number of
ment . noise . Average Average
levels for each of experi- levels character instances recision recall
prior ments for each prior p

Standard deviation 2 87.23% 89.34%

#1 of 200 gray values | 2,4,6, 8, 10 1550 B 4 97 44% 9782%
(out of 255). std = 200

Standard deviation algra}z ; 6 98.73% 98.64%
values (ou

9 of 50, 100, 150, 200 5 1550 of 255). 8 99.04% 98.87%

and 250 gray values
(out of 255) 10 99.14% 98.96%

In total, 3100 experiments were conducted. The whole series
of experiments took 586.2 seconds on an Intel Core M-5Y10c
0.8GhZ, with 8 GB of memory on a single thread with no parallel
computing.

The results of experiment #1 for different ostraca can be seen
in Tables 2-4. They indicate the robustness of the algorithm with
respect to the number of characters, with good results for at least
4 characters.

The results of experiment #2 for different ostraca can be seen
in Tables 5-7. They indicate only a minor influence of the amount
of noise on the average precision and recall.

Table 2: Results of Experiment #1 for Arad 1 Ostracon

Gaussian Results for each scenario
noise Number of Average Average
character instances ..
levels for each prior precision recall
2 94.55% 88.13%
std = 200 4 98.55% 98.17%
gray 6 99.07% 98.88%
values (out
of 255). 8 99.18% 99.02%
10 99.19% 99.07%
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Table 5: Results of Experiment #2 for Arad 1 Ostracon

Number Results for each scenario
of Gaussian noise Average Average
instances level (std) precision recall
50 99.05% 99.03%
100 99.11% 99.05%
5 150 99.27% 98.92%
200 99.01% 98.10%
250 97.83% 95.98%

Table 6: Results of Experiment #2 for Arad 2 Ostracon

Number Results for each scenario
of Gaussian noise Average Average
instances level (std) precision recall
50 98.43% 98.42%
100 98.53% 98.45%
5 150 98.76% 98.35%
200 98.45% 97.52%
250 96.81% 95.43%




Table 7: Results of Experiment #2 for Arad 24b Ostracon

Number Results for each scenario
of Gaussian noise Average Average
instances level (std) precision recall
50 99.09% 99.05%
100 99.14% 99.05%
5 150 99.19% 98.71%
200 98.62% 97.56%
250 96.81% 95.27%

5 CONCLUSIONS AND FUTURE DIRECTIONS

The results of the experiments indicate the potential of our
technique, particularly in the context of degraded historical
characters. The algorithm is straightforward to implement, and is
very fast. The dependence of our method on the number of
characters is limited, and the results are only moderately affected
by the accumulated noise.

The outcomes of the algorithm may benefit from more
aggressive input filtering (e.g. by methods such as [5,6,27]).
Further
introduction of “weights” into the refinement process and a
multiplicity of priors for a single letter in case of a high variance
within the writing. The experimental section may benefit from
adding further noise models.
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