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ABSTRACT 
The problem of finding a prototype for typewritten or handwritten 
characters belongs to a family of “shape prior” estimation 
problems. In epigraphic research, such priors are derived 
manually, and constitute the building blocks of “paleographic 
tables”. Suggestions for automatic solutions to the estimation 
problem are rare in both the Computer Vision and the 
OCR/Handwriting Text Recognition communities. We review 
some of the existing approaches, and propose a new robust 
scheme, suitable for the challenges of degraded historical 
documents. This fast and easy to implement method is employed 
for ancient Hebrew inscriptions dated to the First Temple period. 

CCS CONCEPTS 
• Computing methodologies → Artificial intelligence →
Computer vision → Computer vision problems → Shape
inference

KEYWORDS 
letter shape prior, character templates, document-specific 
alphabet, glyph extraction, ideal/Platonic prototypes, allograph, 
epigraphy, paleographic tables, historical documents, Hebrew 
ostraca, First Temple period 

1 INTRODUCTION 
The issue of prototype inference for typewritten or 

handwritten characters belongs to a broad type of “shape prior” 
determination problems, which has gathered substantial research 
interest during the last two decades. Nevertheless, research 
deriving shape prior of handwritten or printed characters are 
relatively rare in both the Computer Vision (CV) and the 
OCR/Handwriting Text Recognition (HTR) communities. The lack 

of interest of CV scientists can be explained by the specificity of 
this challenging problem. On the other hand, most of the HTR 
studies focus on producing ever improving recognition engines – 
a related, yet not directly dependent problem. The relatively low 
interest in the subject resulted in diverse terms used by the 
existing publications. Among the related terms are 
“letter/handwriting prototypes”, “document-specific alphabet”, 
“reconstructed font”, “glyph extraction”, “character template 
estimation”, “character models”, “codebook generation”, 
“ideal/Platonic prototypes” and “letter shape priors”. In what 
follows, we shall use the last term, common in the CV community. 

The reconstructed priors can be utilized for issues such as 
denoising automatic damage removal, compression, archiving, as 
well as handwriting and style analyses. Moreover, in the context 
of historical texts, the priors are closely related to the so called 
“paleographic tables” – a basic and crucial instrument in the 
toolbox of the historical epigrapher (an expert on ancient 
writings). Commonly, such tables contain one characteristic 
example of each letter type for each inscription in a given corpus; 
see example on Fig. 1. The tables are used to trace the similarities 
and the differences within the handwriting of different localities 
and time periods. This labor-intensive process joins other 
manually performed epigraphic tasks. Indeed, currently, the 
imaging, the creation of the facsimile (a black and white depiction 
of the inscription), the recognition of the letters, the transcription, 
the creation of paleographic tables, as well as their analysis are all 
carried out manually by epigraphic experts. Such an effort is 
extremely time-consuming, producing results which may 
accidentally mix-up documentation with interpretation. In other 
words, the quality of the paleographic tables is often debated and, 
unfortunately, cannot be treated as an established “ground truth”. 

In previous publications, we dealt with imaging techniques of 
ancient ostraca (ink on clay inscriptions; mostly dated to the 7th 
century BCE) [1,2], as well as their binarizations [3-6] and writers’ 
identifications [7,8]. The current research is a continuation of 
these studies. Its envisioned objective is an automatically derived 
paleographic table, accompanied by its algorithmic analysis. In 
this paper, we will concentrate on a challenging intermediate goal 
of obtaining the main building block of such a table, i.e. the letter 
shape prior. 

For consistency purposes, the following terminology is used 
throughout this article. By “letters” we designate the members of 
the alphabet, e.g. “aleph”, “bet”, etc. Their realizations by the 
writer are the particular characters, e.g. an inscription may 
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contain several “bet” characters. A “letter shape prior”, or in short 
“letter prior”, represents a typical way of depicting a given letter. 

Figure 1: Manually created paleographic table, recording 
“typical” representatives for each letter in the alphabet 
(adapted from [25]). 

2  PRIOR ART 
Ostensibly, the task of estimating the letter prior seems to be 

relatively straightforward, requiring a registration of the 
character images, their accumulation and subsequent 
thresholding. However, in reality, this undertaking turns out to be 
surprisingly difficult. Indeed, elastic image registration is an NP-
complete problem [9]. Moreover, multiple template alignment 
estimation was also shown to be NP-complete [10]. Thus, the 
existing solutions of mutual registration problem are heuristic, 
and tend to balance between the computational costs and the 
quality of the result. 

Kopec and Lomelin [10] proposed a sophisticated Aligned 
Template Estimation (ATE) framework, in which overlapping 
glyphs templates were searched in a page image. The authors used 
a two-phase iterative training algorithm, encompassing an 
alignment of pre-existing transcriptions given an initial guess 
(existing transcriptions), as well as an ATE stage. The ATE step 
was implemented via a likelihood maximization procedure. The 
technique was designed for typewritten characters. Its results 
were reasonable given sufficiently large data and a number of 
iterations. Nevertheless, some artifacts were present in the 
resulting “priors”, due to the method's “unawareness” of the 
different character properties, and inexact segmentation 
boundaries. Bern and Goldberg [11] proposed a variation on the 
theme of super-resolution within a single image, also in the 
context of printed text. Given a relatively clean binarized 
document image, the letters were registered, then iteratively 
clustered, taking phenomena such as touching letters into 
account. A Bayesian calculation yielded a prior, which was 
utilized for image de-noising purposes. The results of this 
algorithm also exhibited certain artifacts, due to the exceedingly 

fine-grained clustering, and mistaking noisy characters for 
distinct glyphs. 

For handwriting, several papers included prior estimation as 
an intermediate step in handwriting synthesis (i.e. a simulation of 
a particular handwriting style given a few writing examples). As 
opposed to the relatively fixed typewritten characters of previous 
works, now a more challenging cursive writing, with its high 
variance, was considered. The inputs in these cases were clean 
and thinned writing examples. In [12], after a segmentation 
achieved by a Hidden Markov Model, a curve control point 
interpolation was performed. Wang et al. [13] extracted priors in 
addition to a "tri-unit" technique (akin to the tri-grams of Speech 
Recognition). This was used in order to identify different types of 
“contact” strokes between various characters. The shape prior 
creation was composed of control point extraction (Gabor filters 
leading to a B-splines approximation), affine registration and 
shape prior parameter estimation stages, with impressive results. 

Edwards and Forsyth [14] derived a shape prior in the 
complicated world of historical documents (12th century 
manuscript). The authors initiated the priors with hand cut 
examples. The page image was then segmented into words and 
characters; each word possessed several possible segmentations 
(represented by a graph). For each word, the different possible 
segmentations were searched within a pre-existing dictionary (in 
the target language) by comparing the word image with the 
candidate word image derived from shape priors. The high 
confidence matches were accepted, and then the shape priors 
were updated. If necessary, new shape priors (possibly more than 
one for a single character) were created. The process was then 
repeated. A similar statistical language model was also utilized in 
[15,16], where candidate words are checked vs. an English corpus. 
Words (token) co-occurrence statistics was used in order to 
correctly identify problematic characters. 

A noteworthy modern variational approach in a historic 
setting was presented in [17,18]. Given a set of character edges, a 
confidence map (shape prior) was created for each character 
individually via a Gradient Vector Flow. Subsequently, the 
confidence map could be fitted back into the document image, 
utilizing the Active Contour method, in order to achieve high-
quality segmentation. Panagopoulos et al. [19] utilized estimated 
“ideal” or “Platonic” prototypes for each letter of historical 
inscriptions for the purpose of writer identification analysis. 

3  THE WRITING MEDIUM AND THE 
PROPOSED ALGORITHM 
This paper deals with ancient Hebrew ostraca (ink on clay 

inscriptions), created at the end of the First Temple period, ca. 600 
BCE. These texts, written in alphabetical Paleo-Hebrew writing, 
are of mundane nature, covering issues such as food supplies and 
movement of troops. Many of the ostraca were not composed by 
professional scribes [7], and therefore the variability of the 
handwriting is very high. The inscriptions are quite short 
(typically containing 30-100 characters), and their state of 
preservation is poor (the ostraca are often broken, and parts of the 
writing are soiled). 
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These characteristics of the writing medium influenced the 
design of our algorithm. Contrary to prior art, only small amounts 
of characters for each type of letter are present for each ostracon. 
Moreover, the inscriptions are highly degraded (with blurred and 
erased characters, as well as cracks and stains easily mistaken for 
characters). Hence, we preferred robust statistical estimators such 
as median and medoid (a representative object, whose 
dissimilarity to other objects in the population is minimal) over 
the commonly used mean, which is easily susceptible to noise (for 
another use of medoids and medians in a related setting, see [4]). 

We assume grayscale images of the ostraca (e.g. acquired by 
methods described in [1,2]). We also pre-suppose imperfect black 
and white facsimiles, registered to the grayscale ostraca images. 
Such facsimiles are often created by epigraphers (an automatic 
creation of facsimiles, i.e. binarization, can also be attempted, see 
[3,4]). The facsimiles (manual depictions of the inscription) are 
only utilized for preliminary segmentation purposes, in a manner 
similar to that described in [3], i.e. the registered facsimiles 
provide us with an initial indication regarding the position and 
the type of inscriptions’ characters within the ostraca images. The 
algorithm utilizes the cropped (dilated and padded) character 
grayscale images; chooses a medoid image via simple registration 
procedure; registers all the other character images to the medoid 
image; calculates the initial prior via median calculation per each 
pixel coordinate; thresholds the prior via modification of Otsu’s 
algorithm [20], and if needed, smoothes the result. 

The detailed steps of our algorithm, for a given inscription and 
letter, are: 
1. Cropping character images: 

1.1. The characters’ convex hulls of width iw  and height 

ih  ( 1,...,i K ), are found at the facsimile level. 

1.2. The convex hulls are dilated by  max ,i iPAD w h  

pixels (assuming 4-connectivity), with respect to a pre-
determined parameter PAD  (herein, 0.1PAD  ). 

1.3. The locations of the dilated convex hulls in the 
facsimile image are used in order to crop rectangular 
images ( , ) :[1, ] [1, ] [0,255]i i iS m n M N   of the 

characters from the grayscale ostraca images. Pixels 
corresponding to the dilated convex hulls assume the 
grayscale values of the inscription image, while other 
pixels assume the padding value of 255. 

2. Padding character images: 
2.1. The maximal dimensions of the character images are 

calculated:  max iM M ,  max iN N . 

2.2. These dimensions are utilized in order to create padded 
character images of common size. The padding (by 255) 
is applied symmetrically on the opposite sides of iS , 

resulting in ( , ) :[1, ] [1, ] [0,255]iP m n M N  , images 

of the same size. 
3.  Initial characters’ registration: 

3.1. For each 1,...,i K  and for each 1,...,j K  s. t. i j

a normalized cross-correlation fit ij  [21] is calculated 

between iP  and iS . 

3.2. The (not necessarily symmetrical) distances 
ijd are 

calculated:  1 / 2ij ijd    (see [22] for details). 

3.3. A medoid index argmin ij
i j

l d
 

  
 
  and an initial 

registered image l lR P  are established. 

3.4. For all 1,...,i K , s. t. i l , the ( , )iS m n  images are 

translated according to their optimal shift with respect 
to lR  (calculated at stage 3.1), in order to obtain 

registered images iR ; their padding value is 255. 

4. Letter prior initialization: 
The initial prior initL is calculated via median for each pixel 

coordinate, over all the registered character images: 

 
1,...,

( , ) ( , )init i
i K

L m n median R m n


 . 

5. Letter prior thresholding: 
A thresholded prior image thrL  is calculated via 

 *

thr initL Otsu L , where *Otsu  is an adaptation of Otsu’s 

algorithm [20] ignoring the histogram value of 255 (i.e. the 
padding values of steps 1.3, 2.2 and 3.4, which might skew 
the statistics). 

6. Letter prior smoothing: 
A smoothed prior image smL  is calculated via 

 ,sm thrL MorphCV L REG , where MorphCV  is a 

morphological solution to the popular Chan-Vese [23] 
framework, introduced and analyzed in [24]. The latter 
demonstrates the equivalence of variational and median-
based smoothing. REG  as an optional regularization 
(smoothing) parameter, controlling the median filter radius. 

7. Optional letter prior calculation loop: 
The estimated prior smL  can now be plugged-in at step 3.4, 

with all the iS  optimally fitted to smL  instead of the medoid 

lP . The resulting collection can then be refined (via the 

median, as in step 4), the outcome thresholded by *Otsu  (as 

in step 5), and its result smoothed via MorphCV  (as in step 

6). The loop can be either stopped at this stage, or repeated 
until convergence. 

4 RESULTS 
Experimentations with the proposed framework were 

conducted on three relatively large ostraca, belonging to the First 
Temple period corpus of Hebrew inscription from the Arad 
fortress [25], dated to ca. 600 BCE. In particular, we tested 
different configurations of our method on Arad 1, Arad 2 and Arad 
24b (verso side) inscriptions. The 8-bit grayscale images of the 
ostraca were approximately of the same resolution, with a typical 
character size of 30,000-60,000 pixels (width and height varying 
depending on the character). Registered facsimiles, colored 
according to letter types, were also utilized; see Figs. 2-4 for 
images of ostraca and their facsimiles. 
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This size of the ostracon images was reduced by half (on each 
side) in some of the experiments, in order to test the performance 
of the algorithm in such a setting. In total, 310 characters were 
utilized. Several representative examples of the algorithm’s steps 
and its outcomes are provided below. 

Figure 2: Arad 1 - an ostracon image and its corresponding 
facsimile. The various colors of the facsimile (adapted from 
[25]) indicate different letter types. 

Figure 3: Arad 2 - an ostracon image and its corresponding 
facsimile. The various colors of the facsimile (adapted from 
[25]) indicate different letter types. 

Figure 4: Arad 24b - an ostracon image and its 
corresponding facsimile. The various colors of the facsimile 
(adapted from [25]) indicate different letter types. 

Fig. 5 shows an illustration of the algorithm’s flow on a letter 
“yod” from Arad 24b. On the top row, a refinement of the prior 
(based on 14 characters) is shown, with no attempt at 
regularization (smoothing). On the bottom row, three consecutive 
priors are regularized by an algorithm [24], performing median-
based smoothing with median filter radius set to REG=5. Similarly, 
Fig. 6 shows the steps for a regularized computation of “mem” 
from Arad 2 (based on 10 characters). 

Figure 5: An example of the algorithm’s flow for “yod” 
letter, Arad 24b. Top: a median-based initialization of a 
prior (utilizing information from 14 characters), and an 
estimation of two consequent priors, with no attempt at 
regularization (smoothing). Bottom: three consecutive 
priors are regularized with REG=5. 

Figure 6: Steps for a regularized prior computation of 
“mem” from Arad 2 (based on 10 characters). 

Fig. 7 provides a computation of a prior for the letter “ayin” 
from Arad 1 ostracon, in both full and partial resolution 
(subsequently scaled to the same size). It can be observed that in 
this case, “less is more”, with higher resolution input resulting in 
unwarranted artifacts, mistaken for delicate features. 

Figure 7: The letter “ayin” from Arad 1 (based on 3 
characters). Top: computation of letter prior for full 
resolution imagery, REG=5. Bottom: computation of letter 
prior for partial resolution (halved in each axis), with no 
regularization, REG=5 and REG=10. 

As visual observations of the results are subjective in nature, 
and since neither ancient nor modern writing specimens possess 
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a reliable and uncontested ground truth for letters’ priors (in fact, 
even the facsimiles utilized herein tend to be rather imprecise 
[26]), we settled on an experimental methodology akin to the one 
presented in [6]. Every facsimile character of every ostracon was 
treated (in its turn) as “artificial” ground truth for a letter’s prior. 
Subsequently, “synthetic” character instances were obtained by 
adding incrementally increasing levels of disturbances to this 
image, resulting in different grayscale images. These were utilized 
to infer a prior. Finally, this estimation was compared to the 
“ground truth”, in order to deduce the precision and recall. Some 
details on the settings of various experiments are provided in 
Table 1. 

Table 1: Experiments’ Settings 

Experi- 
ment 

Settings 

Gaussian noise 
levels 

Number of 
instances 
for each 

prior 

Total 
number 

of experi-
ments 

#1 
Standard deviation 
of 200 gray values 
(out of 255). 

2, 4, 6, 8, 10 1550 

#2 

Standard deviation 
of 50, 100, 150, 200 
and 250 gray values 
(out of 255). 

5 1550 

In total, 3100 experiments were conducted. The whole series 
of experiments took 586.2 seconds on an Intel Core M-5Y10c 
0.8GhZ, with 8 GB of memory on a single thread with no parallel 
computing. 

The results of experiment #1 for different ostraca can be seen 
in Tables 2-4. They indicate the robustness of the algorithm with 
respect to the number of characters, with good results for at least 
4 characters. 

The results of experiment #2 for different ostraca can be seen 
in Tables 5-7. They indicate only a minor influence of the amount 
of noise on the average precision and recall. 

Table 2: Results of Experiment #1 for Arad 1 Ostracon 

Gaussian 
noise 
levels 

Results for each scenario 
Number of 

character instances 
for each prior 

Average 
precision 

Average 
recall 

std = 200 
gray 

values (out 
of 255). 

2 94.55% 88.13% 

4 98.55% 98.17% 

6 99.07% 98.88% 

8 99.18% 99.02% 

10 99.19% 99.07% 

Table 3: Results of Experiment #1 for Arad 2 Ostracon 

Gaussian 
noise 
levels 

Results for each scenario 
Number of 

character instances 
for each prior 

Average 
precision 

Average 
recall 

std = 200 
gray 

values (out 
of 255). 

2 90.28% 89.00% 

4 97.64% 97.71% 

6 98.46% 98.39% 

8 98.63% 98.50% 

10 98.66% 98.52% 

Table 4: Results of Experiment #1 for Arad 24b Ostracon 

Gaussian 
noise 
levels 

Results for each scenario 
Number of 

character instances 
for each prior 

Average 
precision 

Average 
recall 

std = 200 
gray 

values (out 
of 255). 

2 87.23% 89.34% 

4 97.44% 97.82% 

6 98.73% 98.64% 

8 99.04% 98.87% 

10 99.14% 98.96% 

Table 5: Results of Experiment #2 for Arad 1 Ostracon 

Number 
of 

instances 

Results for each scenario 
Gaussian noise 

level (std) 
Average 
precision 

Average 
recall 

5 

50 99.05% 99.03% 

100 99.11% 99.05% 

150 99.27% 98.92% 

200 99.01% 98.10% 

250 97.83% 95.98% 

Table 6: Results of Experiment #2 for Arad 2 Ostracon 

Number 
of 

instances 

Results for each scenario 
Gaussian noise 

level (std) 
Average 
precision 

Average 
recall 

5 

50 98.43% 98.42% 

100 98.53% 98.45% 

150 98.76% 98.35% 

200 98.45% 97.52% 

250 96.81% 95.43% 
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Table 7: Results of Experiment #2 for Arad 24b Ostracon 

Number 
of 

instances 

Results for each scenario 
Gaussian noise 

level (std) 
Average 
precision 

Average 
recall 

5 

50 99.09% 99.05% 

100 99.14% 99.05% 

150 99.19% 98.71% 

200 98.62% 97.56% 

250 96.81% 95.27% 

5  CONCLUSIONS AND FUTURE DIRECTIONS 
The results of the experiments indicate the potential of our 

technique, particularly in the context of degraded historical 
characters. The algorithm is straightforward to implement, and is 
very fast. The dependence of our method on the number of 
characters is limited, and the results are only moderately affected 
by the accumulated noise. 

The outcomes of the algorithm may benefit from more 
aggressive input filtering (e.g. by methods such as [5,6,27]). 
Further enhancements, worth considering, include an 
introduction of “weights” into the refinement process and a 
multiplicity of priors for a single letter in case of a high variance 
within the writing. The experimental section may benefit from 
adding further noise models. 
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