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Abstract

This paper suggests a new quality measure of an image,
pertaining to its contrast. Several contrast measures exist in the
current research. However, due to the abundance of Image
Processing software solutions, the perceived (or measured) image
contrast can be misleading, as the contrast may be significantly
enhanced by applying grayscale transformations. Therefore, the
real challenge, which was not dealt with in the previous literature,
is measuring the contrast of an image taking into account all
possible grayscale transformations, leading to the best “potential”
contrast. Hence, we suggest an alternative “Potential Contrast”
measure, based on sampled populations of foreground and
background pixels (e.g. scribbles or saliency-based criteria). An
exact and efficient implementation of this measure is found
analytically. The new methodology is tested and is shown to be
invariant to invertible grayscale transformations.

Introduction

Establishing the contrast of an image is a well-studied
problem in the fields of Optics and Image Processing. Several
measures have been proposed, for that purpose, in the past. Among
these are the contrast measures of Weber [1], Michelson [1, 2],
root-mean-square contrast and its enhancements [3,4], CMI [5-8],
as well as measures based on frequency domain analysis [1,9],
wavelet transforms [9,10] and edge detection [11,12].

However, the problem is complicated by the immense set of
transformations which can be applied to the image, potentially
improving its contrast. Given a proliferation of the available Image
Processing software solutions, applying such enhancements is
almost indispensable. Therefore, the real challenge, which was not
dealt with in the previous literature, is measuring the contrast of an
image taking into account all its possible transformations. In this
article, we will limit ourselves to the wide range of grayscale
transformations.

Prior Art

Various algorithms were designed to give an objective
contrast measure that correlates with human assessment. In what
follows, we consider grayscale images of the form

I:[LL]x[LM]—[0,255] (unless stated otherwise, throughout

the article, the intervals are assumed to be subsets of integers). We
review several popular contrast measures, stating their relative
shortcomings.

A simple way of measuring a bi-population image contrast is
calculating the ratio between foreground and background:

SimpleContrast := s / 11, 1)

where x4, and . are the averages of the sampled background
and foreground luminance values, respectively.

A more commonly used measure (closely related to
SimpleContrast ) is Weber's contrast ratio [1] defined as:

1

Weber =48 —He _7_ (2
Mg SimpleContrast
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Another prominent contrast ratio measure is given by
Michelson [1, 2]:
Michelson = e = I (3)

'min max

Imax+|min
where 1 and 1 are the maximal and minimal luminance

values of the entire image, respectively. This definition can be
adapted to the case of bi-population images as follows:

Michelson := £&8—#¢. (4)
Mg + He
The ratios (1), (2) and (4) result in different values for a single
image. Nevertheless, given a set of images, the ordering based
upon them will be identical. This can be verified via algebraic
manipulations.
A different statistical approach is the root-mean-square
contrast [3]:

1
RMS =| —
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where I(I,m)e[0,]] is a normalized gray level and

-t 5

LM I=1..L,m=1..M

measure is suggested by [4].

A very simple, yet valuable contrast measure, developed and
utilized in [5-8] for the purpose of historical document analysis, is
the CMI index:

I(1,m) . Another, closely related statistical-based

CMI = iy — pp (6)
This measure will play an important role in the current paper.
Some additional approaches are based on frequency domain
analysis (e.g. [1,9]), wavelet transforms (e.g. [9,10]) and edge
detection (e.g. [11,12], that also deal with contrast improvements).

Popular image enhancements bear the potential of improving
the image quality. These include brightening and darkening,
histogram stretching and equalization - all performed by grayscale
transformations. Unfortunately, all of the above mentioned
measures are affected, to some extent, by such transformations. For
instance, the Weber and Michelson ratios are not invariant to
grayscale shifts, the CMI is not invariant to grayscale rescalings,
while all the measures are not invariant to histogram equalizations.
This aspect is demonstrated in Fig. 1 and Table I. The RMS seems
relatively stable with respect to most of the grayscale
transformations. Unfortunately, although its definition represents
the standard deviation of the image, which is an important statistic,
it does not quantify the quality of separation between foreground
and background.
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Figure 1. Example of images undergoing grayscale transformations.
(a) original image with sampled foreground (in red) and background (in blue).
(b) the image after brightness change (+70) (c) the image after histogram
rescaling (x1.3) (d) the image after histogram equalization.

Table I: Contrast Measures Comparison Based On Fig. 1

Image Weber Michelson RMS CMI
(a) Original I 0.535 0.365 1.42x10"  90.6
(b) Brightened |+70 0.378  0.233 1.42x10"  90.6
(c) Rescaled 1-1.3 0536 0.366 1.43x10"  117.7
(d) Equalized  eq(l) 0.33 0.197 1.27x107 721

Problem Setting
Given a contrast measure m, and an image |, the task is

finding a grayscale transformations g € G :={[0,255] — [0, 255}

maximizing m(gel). At first glance, this may seem as a

computational-intensive  undertaking, since the set of
) ) ) o 25+Iogz B i
transformations of a given image is immense ( 2 for images

of bit-depth B). The main contribution of this paper is a
constructive procedure for finding the optimal transformation g
analytically, for a particular measure m. This would lead to a
definition of a new, “potential” contrast measure, possessing the
following properties:
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1. Quantifying the difference between foreground and
background pixels (i.e. the measure is a meaningful one).

2. Images will be judged according to their potential for
improvements via all possible grayscale transformations (i.e.
the measure is “aware” of the possibility to perform image
enhancements such as brightening, rescaling and equalizing
its grayscale levels).

3. In particular, the measure ought to be invariant to invertible
grayscale transformations (as the inherent information of the
image is preserved and the potential for image improvement
after such transformation is maintained).

Measure Definition

Definition of Potential Contrast

In order to deal with this problem analytically, we restrict
ourselves to the CMI measure defined in Eq. 6, m=CMI .
Furthermore, we deal with a case of sampled histograms
(“populations”) of foreground and background pixels, as is

observed in Fig 1a. These are respectively denoted as {p; (t)}255

t=0
and {pB(t)}i’z (satisfying 0<p.(f)<1, O0O<p, ()<l and

ZpF(t):ZpB(t):]')'

We begin with finding the maximal CMI(g-1) for an image
I, with the wealth of optional grayscale transformations g,
proceeding with the definition of a new measure.

Proposition I (optimality):
For a given image |, with sampled populations {p.(t)}

255

and  {ps ()],

transformation with respect to the CMI measure is:

{0 Pe (1) > Pg (1)
255 pe(t) < pg(t)

255
t=0

(as denoted above), the optimal grayscale

g™ (t) ==argmaxCMI(g e 1) =

geG

(M
Proof:
CMI(g 1) = 90 (®) - 2,90 P () = 3.9 Ps(0) - p- ()] <

< S 2500 -p O+ S 0[ps)- pe(®]=

t=0,

t=0, A
Pg (1) pe () Pg (t)<pg (1)

= igfpt(t) Py (t) —igfp‘(t) P () =CMI(g*™ < 1)

| |
Definition: The Potential Contrast (PC) of an image is:
PC(1):=CMI(g™ 1) (8)

Remarks:

1. Due to its nature, the PC measure reflects the innate image
quality, not necessarily compatible with immediate human
impression. Consider a pair of images created from the same
source (Fig. la), one with added Gaussian noise (Fig. 2a),
while the other brightened to some extent (Fig. 2b). Although
the former may be viewed as more contrasted, in fact the
latter has considerably higher Potential Contrast (PC=206.28
vs. PC=255.0). This is due to the fact that it possesses the
same information as the original image, unlike the image with
Gaussian noise.
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(b)

Figure 2. An example of misleading naked eye: Two images stemming from
the same source, with the same sampled populations (Fig. 1a). (a) added
Gaussian noise of y=0, 0=32, PC=206.28 (b) narrowing the dynamic range
and brightening (pixel_value/4+200), PC=255.00.

2. Foreground and background selection can be performed in
numerous ways. These choices represent diverse, often
incompatible, needs of human operators. For example, in Fig.
3, what are the expected foreground and background? Are
they respectively the kettle and the chair? Or maybe the
writing and the whiteboard?

bk

Figure 3. Example of ambiguous foreground and background. While it is
possible that the kettle is the foreground and the chair is the background,
writing as a foreground and whiteboard as a background is another viable
option.

Therefore, in our view, no “ultimate” background and
foreground selections encompassing all feasible tasks can be
defined. This explains our preference for sampled foreground
and background populations — the foreground and the
background are in the eyes of the beholder. Nonetheless, a
“naive” suggestion for automatic foreground and background
estimation is proposed below.

3. The CMI was chosen as a basis for the Potential Contrast
definition due to the possibility of optimizing analytically the
measure for all possible grayscale transformations. We did
not succeed to similarly utilize other measures.
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Measure Properties

Population separability: g™ may be viewed as a function
separating between foreground and background populations. This
function serves as a classifier, denoted herein as PC-binarization.

If the populations are separable by a certain threshold (e.g. distinct
Gaussians), the function can be represented as:

0 t<T
9o (t 9
0= {255 t>T ®

However, this is not the general case (which can be seen in
Eq. 7). Fig. 4 provides an example of grayscale histogram not
separable by thresholding, while easily classifiable by the PC

framework.
@ I]UTSIDE

[IUTSIDE

@uu "SIDE

I]UTSIDE INSIDE l]UTSIDE

(e) ®

Figure 4. Example of foreground and background not separable by
thresholding, while easily classifiable by the PC framework. (a) original
grayscale image (circle=0, writing within the circle=195, writings outside the
circle=127, other areas outside the circle=255), (b) example of thresholded
image (c) circle and its content as foreground (in red) with the rest as
background (in blue), (d) PC-binarization based on (c), (e) writing as
foreground (in red) with the rest as background (in blue), (f) PC-binarization
based on (e).

In fact, even a slight difference in gray levels between the two
populations may suffice to achieve a reasonable separation, i.e.
binarization. See an example of “challenging” contrast
enhancement in Fig. 5, based on the RGB decomposition of the
original image, with several resulting PC-binarizations.

Complexity: The calculation of foreground and background
histograms is linear in the number of pixels ML , which tends to be
small. The construction of g is only dependent on the number

of levels in the histogram. Therefore, for a grayscale image of 256
levels, the overall complexity is O(ML+256) . Hence, the
complexity is linear with respect to the number of pixels.

Equivalence to error estimation: PC(l) can be viewed as a
measure minimizing the rate of false positives (FP) and false
negatives (FN) mistakes, i.e. confusing foreground for background
and vice-versa. This follows from the fact that:

PC(1) = z 255-[p, (1) — e (1)] =

) (1)> P (1)

Z 255 pg(t) - Z 255- . (t)=255-(1-FP - FN)
P (<5 () o (0251 ()
In the case of perfect separability of populations, the PC would be
maximal, i.e. 255. Note: this is the case in Figs. 2b, 4c and 4e.

255

255 -
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@
Figure 5. A natural scene handled by our method. A good contrast
enhancement is achieved despite the similarity in foreground and background
shade. (a) RGB image of the scene with manual selection of foreground in red
and background in blue; R (b), G (c) and B (d) channels, with respective PC
values of 244.8, 67.6 and 61.2; the PC-binarizations for R (e), G (f) and B (g).

Symmetry between foreground and background: The last
property proves that if we replace the foreground sampled
histogram with the background sampled histogram and vice-versa,
the result of the PC measure is the same. On the other hand, the
respective PC-binarizations would be each other’s negatives.

Proposition Il (invariance with respect to invertible g):
Given an image |, and an invertible geG,

PC(1)=PC(g-1).
Proof:
g is invertible, therefore 3g™' € G. g™ - g = identity . Thus:
PC(1)=CMI(g™ = 1) =CMI(g® =g *=g-1)
Denoting: h:=g™ g™ and J:=gol:
PC(1) =CMI (ho J)
Assuming h= g5, then:
PC(1)=CMl(hoJ) <PC(J)=CMI (gjth °J)=CMI (gj’m ogel)
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A contradiction to the optimality of g™ .
Therefore, PC(1)=PC(gol).
]
Remark: This defines the following equivalence relation between
two images:
I, ~1, & 3g invertibles.t. I, =gel,
The invariance property of the PC, with respect to the images

of Fig. 1, is demonstrated in Table Il. This supplements and
contrasts with the results in Table I.

Table Il: PC measure based on Fig. 1

Image PC

(a) Original | 255.00
(b) Bright 1+70 255.00
(c) Rescaled 1-1.3 255.00
(d) Equalized eq(l) 254.98

Automated Foreground/Background Selection

As stated above, the foreground and background selection
largely depends on the specific task and usage scenario.
Nevertheless, one generic approach would be to utilize one of the
existing saliency estimation techniques. Fortunately, a useful and
enlightening comparison of the leading saliency methods is
presented in [13]. Surprisingly, among the “leading” saliency
methods is a simple saliency map dependent on the distance of
each pixel from the center of the image. In this estimation, 255 (the
most salient value) is assigned to the central pixels, while 0 (the
least salient value) is assigned to its corners. The empirical success
of this unsophisticated technique probably has to do with either
conscious or unconscious preference of human photographers for
images centered on the object of their interest.

Despite Bylinskii et al.’s [13] claim of using a Gaussian
model in this estimation, a reverse-engineering of their saliency
image reveals a replacement of the Gaussian with a second-order
polynomial approximation. In particular, given an image
1(x,y):[LL]x[L,M]—[0,255], the saliency (i.e. foreground) map

S(x,y):[LL]x[LM]—[0,255] is constructed via the following
formula:

e |1 L[(x=L/2Y (y-M/2Y
S(x,y) =255 [1 2(( WE j+( YWE ]D (10)

It is easy to see that this formula satisfies
$(0,0)=S(L,0)=S(0,M)=S(L,M)=0, S(L/2,M/2)=255, as
well as 0<S(x,y)<255. Examples of such a saliency map used
for the foreground, as well as its complimentary 255—S(x,y) used
for the background, can be seen in Fig. 6.

" a) - o o
Figure 6. An example of automatically created saliency-based foreground (a)
and background (b) maps.

Naturally, utilization of such continuous maps comes with the
small price of adapting the measures. Indeed, apart from RMS
(which does not rely on either the foreground or the background),

55



all the measures utilize “crisp” definitions of the foreground and
background populations. Fortunately, the measures’ definitions can
be easily adapted for a “fuzzy” case, in which each pixel belongs
to both the foreground and the background with a certain
probability (in fact S(x,y)/255 for foreground and

(255—-S(x,y))/ 255 for background). E.g., s and u; now

become weighted means, while {p. (t)}tzzz and {pB(t)}sz
represent weighted histograms over the entire image — maintaining
the properties of the PC measure.

Experimental Results
The purpose of the following experiments is to empirically

validate the behavior of the various contrast metrics including the

Potential Contrast, with an emphasis on their invariant properties.

The experiment consisted of the following steps:

1. The input for the experiments were images belonging to the
popular GRAZ-02 data set, containing natural images [14].
This included all images under the categories “bike”, “car”
and “person”, which possessed a ground truth. With 300 files
in each category, this resulted in 900 files.

2. If needed, each image was converted to grayscale by
averaging its channels. The histogram of the result was
rescaled between 25 and 230 (maintaining the full dynamic
range in transformations applied in the next step). This
rescaled image is denoted herein as “initial” image.

3. Various gray-level transformations were applied to the
“initial” image. This resulted in 6 additional images for each
“initial” image. The transformations in use were: negative of
an image, addition of 25, subtraction of 25, multiplication by
1.1, histogram stretching (from 0 to 255), and histogram
equalization (from 0 to 255). In total, further 900x6=5400
images were obtained.

4. Five contrast measures (Weber, Michelson, RMS, CMI and
PC) were applied on all the images (“initial” and
transformations). The calculation used either marked
background and foreground (utilizing ground truths from
[14]), or an automated foreground and background selection
scheme, as described above (the results for these two types of
experiments are presented separately below).

5. For a given measure, the result for each transformation was
divided by the result of the “initial” image, in order to obtain
a “ratio of change” (e.g., if a given measure results in 2.718
on “initial” image, and in 3.14 on a transformed one, the
division produces a ratio of 1.1557).

6. Ratios within the range of [0.99,1.01] were marked as
indicating “invariance” of the measure with respect to a
particular transformation, while others were counted as “non-
invariant” outcomes. The percentage of the “invariant” ratios
was calculated.

Experiment Results for Manual Foreground and
Background Selection

The results in Table 1l were achieved by using existing
ground truths, marking foreground and background.
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Table Ill: Manual foreground and background selection: Ratios
between the measures of transformed images with respect to
the “initial” image (predicted invariance marked in red).

Transformation  Statistics Weber Michelson RMS CMI PC
Negative Minimum -2.8741 -1.7535 1 -1 1
Maximum -0.1468 -0.1842 1 -1 1
Average -0.8913 -0.7291 1 -1 1
Invariance % 0.0% 0.0% 100.0% 0.0%  100.0%
+25 Minimum 0.5663 0.6134 1 1 1
Maximum 0.8833 0.8666 1 1 1
Average 0.8167 0.8032 1 1 1
Invariance % 0.0% 0.0% 100.0% 100.0%  100.0%
-25 Minimum 1.1523 1.1820 1 1 1
Maximum 4.2715 2.7046 1 1 1
Average 1.3132 1.3391 1 1 1
Invariance % 0.0% 0.0% 100.0% 100.0%  100.0%
x1.1 Minimum 1 1 1 11 1
Maximum 1 1 1 11 1
Average 1 1 1 1.1 1
Invariance % 100.0% 100.0% 100.0% 0.0% 100.0%
Histogram Minimum 1.1523 1.1820 1 1.2439 1
stretching Maximum 4.2715 2.7046 1 1.2439 1
Average 1.3132 1.3391 1 1.2439 1
Invariance % 0.0% 0.0% 100.0% 0.0% 100.0%
Histogram Minimum -99.4991 -102.5043 0.7581  -100.0948  0.9727
equalization Maximum 20.0625 19.6348 4.5870 19.2820  1.0000
Average 1.3029 1.4134 1.5294 1.5560  0.9983
Invariance % 0.7% 0.8% 1.1% 0.6% 98.7%

As expected, the most invariant and well-behaving metrics are
RMS and Potential Contrast. However, only the latter holds an
almost-perfect  invariance  on  histogram  equalization
transformation, whose non-linearity breaks the RMS record.

Experiment Results for Automated Foreground
and Background Estimation

The results, which can be seen in Table IV, were achieved by
using automated foreground and background estimation.

Transformation _ Statistics Weber Michelson RMS CMI PC
Negative Minimum -2.0264 -1.7467 1 -1 1
Maximum -0.1561 -0.1679 1 -1 1
Average -0.8588 -0.8406 1 -1 1
Invariance % 0.0% 0.0% 100.0% 0.0%  100.0%
+25 Minimum 0.5794 0.5945 1 1 1
Maximum 0.8723 0.8664 1 1 1
Average 0.8143 0.8138 1 1 1
Invariance % 0.0% 0.0% 100.0% 100.0%  100.0%
-25 Minimum 1.1715 1.1823 1 1 1
Maximum 3.6483 3.1459 1 1 1
Average 1.3161 1.3144 1 1 1
Invariance % 0.0% 0.0% 100.0% 100.0%  100.0%
x1.1 Minimum 0.2481 0.2481  0.9993 0.2730 1
Maximum 1.0399 1.0399  1.0039 1.1443 1
Average 0.9980 0.9980  1.0023 1.0983 1
Invariance % 96.7% 96.7% 100.0% 0.0%  100.0%
Histogram Minimum 0.5342 0.5342  0.9993 0.5426 1
stretching Maximum 3.6398 3.1516  1.0033 3.0089 1
Average 1.3175 1.3158  1.0001 1.2452 1
Invariance % 0.0% 0.0% 100.0% 0.0%  100.0%
Histogram Minimum -2977.7504 -2740.1799  0.7597  -2664.9400 0.9718
equalization Maximum 351.1975 336.0259  4.5821 326.7109 1
Average -0.8685 -0.6326  1.5308 -0.3027 0.9983
Invariance % 0.1% 0.1% 1.0% 0.4% 99.1%

Since this experiment is based on an estimated foreground
and background, which may be quite far from a clear-cut partition
of an image, the outcomes are expected to be less numerically
stable. Indeed, the results for many transformations are much more
spread-out. Nevertheless, yet again, the challenging histogram
equalization provides a clear winner. In fact, it doesn’t seem that
the stability of Potential Contrast was significantly hampered by
the inaccuracy and fuzziness in the foreground and background
selection.
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Additional Usage and Results

The PC measure received extensive real-world usage, applied
on multispectral imagery of large corpora of ancient inscriptions.
The first problem included a selection of optimal wavelengths for
multispectral imagery of Second Temple Period Dead Sea Scrolls
[15]. See Fig. 7a for an example of such a scroll, with a correct
channel automatically selected and binarized in Fig. 7h.

@ ' (b)
Figure 7. Section of Dead Sea scroll #124, fragment 001 [15]. (a) Image of a
scroll (b) PC-binarization of (a).

Another test for our technique had to do with First Temple
Period Hebrew, as well as Late Bronze Hieratic (cursive Egyptian)
ink-on-clay inscriptions. These were unearthed during the
excavations of Horvat Radum and Horvat Uza (e.g. Figs. 8, 9)
[16,17], Tel Malhata [18,19], Qubur el-Walaydah (e.g. Fig. 10)
[20] and Jerusalem [21]. The difficult and noisy medium of the ink
written on pottery sherds presented a good opportunity to test the
new methodology. Again, our task was to automatically select the
“potentially” most contrasted image out of a spectral cube, in order
to allow further analysis by human scholars. See Figs. 8-10 for
examples of ostraca handled by our method, in order to find an
optimal imaging wavelength. An elaboration of our experiments
pertaining to this particular use case appears in [22].

@ (b)
Figure 8. Images of Horvat Radum ostracon No. 1 [16,17]. (a) optimal image
at A=620 nm, selected by our method (b) sub-optimal image at A=950 nm.

@)
Figure 9. Images of ostracon No. 3 from Horvat Uza [16,17]. (a) RGB image
(b) multispectral image taken at A=660 nm, selected by our method.
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(@ (b)
Figure 10. Images of ostracon No. 13.056-01-S01 from Qubur el-Walaydah
[20]. (a) RGB image, (b) multispectral image taken at A=690 nm, selected by
our method.

Summary

This paper presents a new approach for contrast estimation.
Using available Image Processing software, an image can undergo
various grayscale transformations, often improving its contrast.
The common contrast evaluation methods, surveyed in this article,
do not take this possibility into account.

Our Potential Contrast measure encompasses an analytic
solution to the problem of finding the most contrasting grayscale
transformation. The properties of the Potential Contrast were tested
and compared to other measures on a large data set of 900 images,
in two scenarios of foreground and background selection. The
results indicate the invariance and the stability of the measure with
respect to various gray-scale transformations.
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